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In this paper a very simple crack model is considered
in order to elicit the fundamental features of a crack
interacting with a deformation field generated by the

DOUBLE SLIP PLANE CRACK MODEL

J. WEERTMAN/, I.-H. LIN? and R. THOMSON*
'Department of Materials Science and Engineering, and Materials Research Center,
Northwestern University, Evanston, 1L 60201, U.S.A.
“Fracture and Deformation Division National Bureau of Standards. Boulder. CO 80303, U.S.A.
‘Center for Materials Science. National Burcau of Standards, Washington, DC 20234, US.A.

(Received 12 April 1982; in revised form 22 October 1982)

Abstract —In this paper a simple crack model is proposed and the behavior of this crack under stress is
explored. The crack consists of an ordinary Griffith crack, but on cither side of this crack. at a distance
w. exist two slip planes that are parallel to the crack plane. It is assumed that slip can only take place
on these two planes. Elsewhere the material is elastic. When w is set equal to zero the crack becomes a
Bilby-Cottrell-Swinden crack. This crack model simulates in a simple way the clastic crack tip enclave
model of a crack. Because w has a finite value the material around the crack tip is elastic. The crack is
considered to be stressed in either mode Il (plane strain shear) or mode 11T (anti-plane strain shear). It
is found that for a virgin, stationary crack the stress intensity factor at the crack tip is equal to the
conventional stress intensity factor when the stress is raised under a monotonically increasing load.
However, when the crack tip advances under such a load the crack tip stress intensity factor is smaller
than the conventional stress intensity factor. The fracture stress is proportional to the surfuce energy of
the solid raised to a power. In general, this power is not equal to one half. For cyclic loading by using
qualitative arguments it is shown that the crack can grow an incremental distance cach cycle. and the
growth law is a fourth power Paris equation.

Résumé—Dans cet article, nous proposons un modéle simple pour une fissure dont nous étudions le
comportement sous contrainte. Cette fissure est une fissure ordinaire de Griffith, mais il existe de chaque
cote de la fissure, 4 une distance w, deux plans de glissement paralléles au plan de la fissure. Nous
supposons que le glissement ne peut se produire que sur ces deux plans. Partout ailleurs, le matériau est
élastique. Lorsque w égale zéro, la fissure devient une fissure de Bilby, Cottrell et Swinden. Ce mod¢le
de fissure permet de simuler simplement le modéle d’enclave d'une extrémiteé de fissure élastique. w ayant
une valeur finie, le matériau autour de 'extrémité de la fissure est élastique. Nous considérons que la fissure
est mise sous contrainte selon le mode II (cisaillement plan) ou le mode 11 (cisaillement anti-plan). Dans
le cas d'une fissure vierge stationnaire, le facteur d'intensité de la contrainte a I'extrémité de la fissure est
égal au facteur d'intensité de contrainte classique lorsque l'on augmente la contrainte de maniére
monotone. Cependant, lorsque I'extrémité de la fissure avance sous I'effet d’une telle contrainte, le facteur
d'intensité de la contrainte a 'extrémité de la fissure est plus petit que le facteur d'intensité de contrainte
classique. La contrainte de rupture est proportionnelle a une puissance de 1'énergie superficielle du solide:
en général, cette puissance n'est pas égale 4 un demi. Dans le cas d’une charge cyclique. des arguments
qualitatifs montrent que la fissure peut se propager sur une distance qui augmente a chaque cycle, et que
la loi de croissance est une équation de Paris de degré quatre.

Zusammenfassung—Ein einfaches RiBmodell wird vorgeschlagen. Insbesondere wird das Verhalten des
Risses unter einer angelegten Spannung untersucht. Der RiB ist ein gewShnlicher Griffith-RiB. Auf beiden
Seiten dieses Risses jedoch finden sich zwei Gleitebenen parallel zur RiBebene im Abstand w. Es wird
angenommen, daB Gleitung nur auf diesen beiden Ebenen ablauft, ansonsten ist das Material elastisch.
Mit w =0 erhélt man einen RiB entsprechend Bilby—Cottrell-Swinden. Das vorgelegt Modell beschreibt
auf einfache Weise das Enklavenmodell einer elastischen RiBspitze. Da w einen endlicher Wert besitzt,
ist die RiBspitze elastische. Es wird angenommen, daB der RiB entweder in Mode Il (ebene Scherung) oder
Mode 11 (anti-ebene Scherung) SpannungsmiBig belastet wird. Bei einem frischen stationédren RiB gleicht
der Spannungsintensitdtsfaktor an der RiBspitze dem konventionellen Spannungsintensititsfaktor, wenn
die Spannung mit einer monoton ansteigenden Last erhoht wird. Wenn sich jedoch die RiBspitze unter
einer solchen Last ausbreitet, dann wird der Spannungsintensitétsfaktor kleiner als der konventionelle.
Die Bruchspannung ist proportional zur Oberflichenenergie des Festkdrpers hoch einer Potenz, die nicht
ein halb ist. Qualitative Argumente zeigen, daB der RiB unter zyklischer Belastung bei jedem Zyklus ein
wenig wachsen kann: das Wachstum wird durch eine Parisgleichung der vierten Potenz beschrieben.

INTRODUCTION stress concentration at the crack tip, and to confirm
results of an earlier more complex elastic enclave
model [1. 2]. In our model, we assume that slip can
occur on two slip planes, parallel to the cleavage
plane, but displaced from it by distance w in each

tSupported in part by U.S. Army Research Office. direction, Figs 1 and 2. Our work will be couched in
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Slip Plane SllD’ZOHQ
w /
Crack i " ST
Plane w TTY
i . S
Ship Plone ' Lliiil
x*0 ) TTTT

Fig. 1. Double slip plane model. The crack is assumed to be
an atomically sharp slip crack on the negative xv-axis with
the tip at the origin. Two planes paratlel to the crack plane
are permitted for dislocation generation and slip. The planes
are assumed to be a distance w from the crack plane. Mode

I or H will be assumed throughout tor purposes of

analysis.

terms of the shielding afforded a crack by the defor-
mation field generated by the stress concentration at
the crack tip.

For our simple model, we will show that (1) the
initial response of a crack to the generation of a
deformation field on the two slip planes is essentially
nonshielding in character; (2) that as the crack prop-
agates, the stress intensity at the crack tip. X, is
shielded from the external stress intensity, K, that is
K > K,: and (3) that cyclic loading with work hard-
ening can lead to crack growth.

These results are based upon a particular form of
one dimensional slip, and we can expect the results
will be moditied if slip occurs on planes which
intersect the cleavage plane. We will discuss these
modifications in a qualitative way, but the simple
model nevertheless leads to results which highlight
how the behavior of materials with real dislocations
will differ from that of a plastic continuum. We also
note here that our one dimensional model has certain
similarities to the early BCS model [3] of fracture, but
the main physical picture resulting in our case is
different in important ways from the BCS results. We
will work in mode IIl and mode Il because the
mathematics will be accessible to an analytic ap-
proach (especially in mode IIl), but the general
features are expected to apply to the more important
mode I, as well. Finally, we note that our paper
addresses the behavior of a crack whose tip is atom-
ically sharp.

THE CRACK TIP STRESS INTENSITY FACTOR

In an earlier paper [4], by one of us, we showed for
a set of dislocations in mode 1 surrounding a sharp
crack, that

E)

[ >

G=§/+Z§d= (l)
d

[39]

Iy

where g is the force per unit length exerted on the
defect, here referred to as ¢ for the crack, d for a
dislocation, and G is the force on the conglomerate
composed of crack plus dislocation distribution. G
and g are complex functions of x + iy, the crack is
supposed to lie along the negative x-axis with the tip
at the origin, the real part of g or G is the x-
component of the force, and the imaginary part the

x:0
Fig. 2. Double slip plane model. Dislocations are distributed
symmetrically on the two plitnes.

y-component. g is the complex conjugate of g. jtis the
shear modulus. The physical interpretation of equa-

tion (1) is that the total force & = K* 2 in terms of

the far field external stress intensity factor (small scale
yielding) is lincarly composed of the separate forces
on crack and dislocations. Equation (1) is valid only
when the dislocation distribution is symmetric (the
situation considered in this paper) about the x-axis.
The local force on the crack by itself is given by

g=K:2u

K=K-K,

! !
K,/":%Z/‘h/( _’—+ ———) (2)

i w ", g
' N ST,

¢, is the position of the jth dislocation in the complex
plane. K, is the screening contribution to K at the
crack tip due to ihe dislocation distribution. The
physical meaning of equation (2) is that the crack is
either screened (or antiscreened) from the externally
imposed stress represented by the external K-field,
depending on the sign of b,.

In Fig. 2, since the x-component of force on a
dislocation is given by Re(g,) = 1,h,, where 7 is the
shear stress on the slip plane, we can also write

§’+Zrlb/=‘§’+2J’
!

Here we have replaced the discrete dislocations by a
continuous linear distribution db, = B(x)dx. The in-

t(N)B(x)dx = K2 (3)

:

Fig. 3. Path for J-integral. I" is a path outside the crack and

all dislocations. ;' encloses the crack tip, and §, and S,

enclose the two symmetric dislocation distributions on the
parallel slip planes.

ey
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tegration is carried out on only one slip plane, but
in Fig. (2), we assume that the distribution on each
slip plane is identical, accounting for the factor 2
before the integration in equation (3).

Equation (3) is easily generalized to mode II and
mode [ by taking the J-integra! (the J-integral of Rice
{5] which is identical in the elastic case to the F,
integral proposed carlier by Eshelby [6]) path shown
in Fig. 3. (This is in fact what was done in Ref. [4].)
The external path enclosing crack and dislocations
yields the total crack extension force, G = K° 2 4 p,
where ¥ is a mode dependent factor given below, g,
is K:2.4u and the path around the dislocation
distribution is given by

.
Re(G) =J (Wdy —rs ds). @)
TN .y

Thus we can replace (3) by the more general

z,+ 2J T(N)B(x)dx = K320

{l Mode 111

I — v Mode Il.

[t should be noted in equation (3) and (5) that we
are considering only the case when a continuous
dislocation distribution B(x) does not have a stress
singularity associated with it. This is the case when
t{x) is finite everywhere on the slip planes. If stress
singularities exist at an end of a dislocation distribu-
tion, as they would if dislocations were piled up
against an obstacle, the integrals of (3) and (5) must
be evaluated with great care. For example, in that
case, a finite contribution is made to the J-integral
from the tips of the distribution, whereas when t(x)
is everywhere finite, the contribution from the tips is
zero [7].

It should be noted that equation (2) and (5) can be
rewritten in terms of the (total) dislocation produced
shielding or antishielding stress intensity factor, L, of
Rice and Thomson [8]. Equation (2) then becomes

K=K+L (6)

where L has a positive value in the antishielding case
and a negative value in the shielding situation. In
equation (5) let the integral term be set equal to

fl t(x)B(x)dx =£I 7
, 4u

where [ is defined by this equation. Equation (5) can
be written as

K=KQ1-1/K)"* (8)
Combining equations (6) and (8) gives
L=—K+(K'=-D" 9)

STATIONARY CRACK

We now explore the result of a sequence of events
in which we allow a sharp slip crack to generate a

473

dislocation distribution on the discrete slip planes of
Figs 1 and 2, but require the crack to remain station-
ary. Specifically, (1) we place a slit crack in an
otherwise perfect elastic medium; 2y we  allow
sources to operate anywhere on each of the two slip
planes so that identical distributions are produced on
cach. It is a property of these distributions that equal
numbers of dislocations of positive and negative
burgers vector are produced on ecach slip plane
because a dislocation source always produces dis-
locations in pairs. Thus

J B(x)dy =0:

(3) we allow the dislocation distribution to come into
force equilibrium, so that the total force acting on a
dislocation is zero. The elastic portion of the force
will be made up of the total elastic shear stress, 1,
acting at the dislocation in question from all the other
dislocations and the stress from the crack. There will
also be a force due to lattice friction, due to the
effective lattice friction stress which we call a,. Thus
we can write in equilibrium that

(10)

tx,)= —a,x).

If @, is a simple constant, then the crack model would
simulate a perfectly plastic solid. If a, increases with
the displacement. D, across a slip plane where

D(.\')=f B(x)dx (11)
then the crack model would simulate work hard-
ening. (The reader will note that true “"work hard-
ening” is not really consistent with our model, be-
cause the interaction with the other dislocations is
presumably included in equation (3) or (5). In true
work hardening, “redundant™ dislocations of op-
posite sign are all important. The net Burgers vector
of these redundant dislocations in any small volume
element is equal to zero, and consequently they do

not appear in a dislocation distribution function
B(x). We therefore have to assume for this purpose
that there are other effects which increase a,, perhaps
lattice debris, other dislocations in walls, etc., which
we do not otherwise explicitly countenance. (How-
ever, making o, depend upon D does give us an
analytic way to bring the real effects of deformation
into our simplified model.)

We now calculate the total elastic force on the
distocations from equation (3) or (5). This is given by

ZJ?FZJ. t(x)B(x)dy = _2J.

In the spirit of the last paragraph, we now assume
that o,=0,(D). Since B(x)dx =dD, we then have

.

o, B(x)dv. (12)

s D=0
j o,(x)B(x) dx =j a(D)dD =0. (13)
s )

) =10
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Likewise, / given in equation (7) is zero. Substituting
for g, in (3) or (5), we then have

_ K} _ K
TN 24

(or from equations (8) and (9) K, = K and L = 0), and
the crack tip is not screened by the deformation zone.
Although this result is derived for two parallel slip
planes, it is also valid for an arbitrary number of slip
planes parallel to the cleavage plane in which sym-
metry about the x axis is preserved.

This result is so striking that it deserves additional
discussion and verification. (This result, as pointed
out by a reviewer, is obvious from the original
interpretation of Eshelby’s [6] F, integral. F, measures
the resultant on the crack tip of the forces due to the
elastic field on all the dislocations, which is opposite
to the traction stress. With equal numbers of dis-
locations of opposite sign, and each opposed by the
traction stress, only the crack extension force re-
mains.) Suppose we have only one pair of dis-
locations of opposite sign on each of the slip planes
of Fig. 4, and assume mode [Il. Then we explore the
possibility of setting the dislocation contribution to K
equal to zero

| 1
H=K,=uth1( ———)
r v2rg \/2ng,
jh

0 — 0,
= f/cosi' sin(),—cos—zi sin()z). (15)

g (14)

2w
5 ¥:41)

For any value of 6, (where we place b,) in the range
0 < 8, < m, there is another and different value for 0,
(where we place b,) for which K, =0 (except for the
single angle where only one value of 6 satisfies (15),
0=2tan'1 /\/3). From equations (3) and (4) when
Kd = O

Re(g, +2,)=0. (16)

and if there exists an effective lattice friction stress, 6,
which is the same for each dislocation, since
b = —b,, we have constructed an equilibrium
configuration for which there is no screening. Equa-
tion (14) is thus confirmed. We note that as w—0 in
equation (15) the argument degenerates.

The nonshielding result of equation (14) is a special
case for slip planes which are parallel to the cleavage
plane. However, even in cases where this geometry is
not approximately a valid picture, we retain some
features of the nonshielding result. The reason is that

Cl

1 2

w o
s

T

Fig. 4. Schematic figure for two pairs of dislocations in
non-shielding configuration. Coordinates of dislocations are
labelled.

T

——-— - ] — — - — —

/-0'

Fig. 5. Friction law. Dashed lines show the law obeyed for

reversed slip following forward slip with work hardening.

The full line for negative slip indicates a tully reversible slip
law.

in all cases, dislocations wiil initially be formed in
pairs, and the pair dipoles will be so oriented that the
antiscreening dislocation will be closest to the crack,
and will be attracted toward it. Hence. the initial
effect of loading a stationary crack will not be to
shield it, but shielding can only occur as a later stage
of the total process. We turn now to a discussion of
possible later stages.

GROWING CRACK

Let us suppose we have a stationary crack with two
active double slip planes as described in the previous
section in which K,=0 and K =K,, and that we
begin to increase K in adiabatic fashion. When the
value of X, reaches the Griffith critical value for crack
propagation in a perfectly brittle solid, the crack
propagates. However, when this happens, the re-
lations between the elastic stresses, r and o, which are
responsible for establishing the equilibrium of the
dislocation configuration become altered, and the
nonshielding solution, equation (10), breaks up. In
effect, the antishielding dislocations undergo reversed
slip if they are carried along with the propagating
crack, and o, for these dislocations then changes sign.
See Fig. (5). This reversal of 6, means that the crack
will leave the antishielding component behind, and
the shielding dislocations will be pushed ahead of it.
The net effect is that only the shielding dislocations
are left in the distribution. The sum in equation (3)
to obtain K, is then finite and positive, and X > K, so
that the crack tip is shielded.

That antishielding dislocations cannot be carried
along by a growing crack can be understood from the
following considerations. If antishielding dislocations
were carried along and thus move in the same
direction as the shielding dislocations, the stress on
the slip plane must change discontinuously from the
value g, to the value — g, if there is no gap on the slip
plane between the shielding and the antishielding

a3

e e
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(a)
B (x)
l B,(x)
/\\
Siip Plane 214404404448084032
Crack
— X
Plane xt0
Binl (b)

A~

Fig. 6. Dislocation distribution. (a) Schematic dislocations

for one of a pair of parallel slip planes. The distribution near

x =w falls to zero smoothly. (b} For the purposes of

analyses, we assume the dislocation distribution is on the

crack plane, and that the closest approach of the dislocation
distribution to the crack tip is w.

dislocations. But a stress discontinuity of this type
can be produced only by a logarithmically divergent
dislocation distribution which has the same sign on
either side of the discontinuity. (This can be shown
using the usual Hilbert transform integral equations
that appear in, for example, the BCS crack theory.)
Hence no solution exists if no gap exists. But suppose
a gap does exist. The antishielding dislocation must
trail after the shielding dislocations. If they were in
the forward position they would be pulled into the
shielding dislocations because of the attractive stress
fields of both the crack tip and the shielding dis-
locations. Because the friction stress is supposed to
have a reversed sign in the region of the antishielding
dislocations, the.e dislocations, too, according to
equation (3) or (7), are shielding dislocations and
cause a reduction in the value of K,. But the anti-
shielding stress intensity factor L of the antishielding
dislocations cannot change their sign according to the
equations of Rice and Thomson [5). Thus our sup-
position that there is a zone of antishielding dis-
locations, with a reversed friction stress that is carried
along with the crack tip through the attraction of
these dislocations wwards the shielding dislocations,
has led to an inconsistent result and the assumption
must be incorrect.

We will now carry out an analysis of the shielding
to show how it depends in detail on the material
parameters. We shall assume the distance, w, is small
compared to the length over which the dislocations
are distributed. In this case, the closest approach of
any dislocation to the crack tip will be w. Further,
except for those dislocations closest to the tip, the
angular part of the crack is negligible, and 0 can be
taken 0 =0 to good approximation. Thus we can
approximate the entire distribution and its effect on
the crack by replacing the pair of slip planes with a
single line of dislocations on the cleavage plane, but
where the distribution begins at x = w. That is, we

assume a “dislocation free zone™ in front of the
crack, to correspond to the slip plane separation, w.
See Fig. 6a, b. This strategem allows us to carry out
a rigorous analysis.

From Ref. (4) the force on an arbitrary dislocation
on the slip line is

Kb ;zh2+ ub'b x° 1
\’27&- dnx 4 2m oy xx

=

X is the distance on the cleavage plane from the crack
tip to the dislocation, and a sum is taken over all
other dislocations at x’ of Burgers vector b’. Adop-
ting a continuum limit, we set db = B(x)dx, and
write

ldg K _yB(.\‘)q._\'
Bdx \_.fm 4nx

R O ’
+—”—f \/z <ty ),= —o/(x) (18)
n .\ xx—x

a/{x) on the right is the lattice friction stress, and with
it (18) is the condition for equilibrium to be satisfied.
We shall take o, as a constant in the following,
because otherwise the mathematics becomes intrac-
table. The second term is of lower order than the
others, and must be dropped. We note that this
dropout of the self-image term demonstrates a phys-
ical difference between continuum theories and dis-
crete theories. The self-image term is known to be
dominant at distances of order & from the crack tip.
and thus all continuum theories, because they lose
this scale parameter, are essentially helpless to discuss
atomic phenomena at the crack tip. Equation (18)
can be put in the canonical integral equation form

8§ dx’
P[_'{':J I-.E

X = r'

'l

—n.x K
m_\-.=w(g,+_=)
H

A 2AX
B(x'y = /¥ B(x). (19)

This is the standard singular integral discussed by
Muskhelishvili [9] and we refer the reader to the
paper of Head and Louat [10] for its solution. This
problem has been solved recently in a different way
by Chang and Ohr [11]. After carrying out the
analysis described below, we discovered that
Majumdar and Burns [12] in a paper shortly to be
published have carried out the solution by a tech-
nique very close to our own. However, since we are
interested in the analytic results which can be ob-
tained on the assumption that w < R, we shall indi-
cate our steps in summary form below.

The uniqueness relation of Head and Louat [10] for
a distribution B(x) which has zero values at w and R

r .
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is given by
K=—no, 1,
R v T o
I = el | AV SO
' j. \—n)(R—\)\ N
IndR w
2\, R

R dx’
l_‘ = ——————————r=3l;. (2())
W (X = wHR — )

The integral equation is inverted by the equation

B(\)___\/(\ —w )(R—\){M‘(\) 6,14}
\_7'[

j dy’
e
woy (W) R =N =N

- 3 X’ T dy
LV = w)R =Xy —

Using the uniqueness relation, (20), and carrying out
the integration to find X, from (3), we have

R B 3 o

K= K——"—j Ly (22)
\V2n N

Combining the previous equations we find

K, rnff — 4( )

b at— ] =

X +—= lj /(¥ —wHR —w)

We carry out the integrations indicated in the limit
R > w by clementary integrals and find to lowest
order in w/R

K
- =Zif(ln4klu +473)
K=

-=10

n

(23)

3 /i
a,/wx(Ind R/w +4/3).

(24)

This result is equivalent to that obtained by Ma-
jumdar and Burns [12]. Its form in equation (24) is
particularly useful to us because of its simple analytic
character.

It should be noted that the result given by equation
(24) says that the total integrated burgers vector of
the dislocations ahead of the crack tip is the maxi-

mum possible subject to the condition that at a
distance w ahead of the crack tip the stress is equal
to g,. It is, of course, possible to find a solution in
which a smaller number of dislocations are present
ahead of the crack tip. The value of K, then is larger
than that given by equation (24). Bu. in this situation
the stress would be larger than a, at the distance w.
If more dislocations were present, the dislocation
distribution would either have to start at a distance
smaller than w, or if the dislocations were restricted
to start at w, an infinite stress at this position is
required to prevent the dislocations from ap-
proaching closer to the crack tip.

DOUBLE SLIP PLANE CRACK MODEIL

We note that equation (24) contains the shielding
physics which the BCS model does not. For example,
if we et w0 as in the BCS model. K, »0, wherein
we lose the A tield of the underlying crack entirely.
For us, w will retain the meaning of the separition
between slip planes. We note that for slip planes
actually separated from the cleavage plane. that is, as
shown in Fig. | rather than Fig. 6b, the solution very
near the tip will be somewhat diflerent from the
cleavage plane model of equation (23). The distribu-
tion near the crack tip will not cut off as sharply as
in (21). but this ditference is expected to be i minor
quantitative effect rather than a qualitative one.

To incorporate work hardening directly into the
dislocation equilibrium equations, (18). a, would
have to be a function of the local density B(x), and
there would be no analytic solution of the integral
equation. However, if we allow a, 1o be a function of
the total dislocation content of the slip plane, we can
then incorporate a simple work hardening law into
our results. Thus, we shall set

a,=a,(D* D,)"

R
D* =J B(x)dx (25)

a,and D, are constants, and m is the work hardening
exponent, 0 <m < |.
To the lowest order in w R,
integrate B(x) to obtain
2k [R

D*= _IT 5 (26)

for mode i, w

Then, combining equation (24), (25) and (26) we

obtain

,\’1-' (1« a3
(]

n\ b m A
f ==
~(3)

\ 2D
ﬂ"], Jm(ln4 R/M' + 4;3)“ + o) dm®

From equation (27) and our previous discussion, we
can now predict the overall behavior of a bare crack
when at time 1 = 0, we load it up and allow defor-
mation to proceed in the vicinity of the crack tip. We
must first assume that the crack will propagate
whenever K, exceeds a critical value for cleavage of a
pure brittle crack in the solid. K,. In an uncom-
plicated situation, we must reasonably assume this
critical value 1s the Gritlith value

1y AN 4‘,';(7

(27)

(28)

where 7 is the intrinsic surface energy of the solid. At
time 1 = 0, the crack is loaded, and dislocation pairs
are created on the slip planes. For a short transient
period, the pairs remain in the vicinity of the crack
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tip. and the K, remains near zero. The external K is
transmitted directly to the crack tip unshielded. The
crack will accelerate as soon as K, is achieved. the
shielding dislocations will be shoved ahead of the
crack, and antishielding ones will be sloughed off at
the rear. As the shielding “charge™ is built up around
the tip with the loss of the antishielding dislocations,
the crack will require larger and larger external X to
keep K, above its critical cleavage value. Ultimately.
a steady state is conceivable in which the shielding
charge is constant, and in this case. the relation
interconnecting the external K, K, w, m, etc., will be
given by equation (27). Equation (27) then becomes
a model fracture criterion for the material.
Equation (27) may be compared with the elastic
enclave models of references [1} and [2]. (We have
shown separately [13] that the versions of the pre-
vious elastic enclave models are equivalent.) Here,
however, we have a more satisfying model of cracking
in terms of the dislocation theorist. Our model, we
believe, should have the same kind of appeal which
the original BCS model did, and through it we are
able to see intuitively into the role dislocations and
their discrete sources play in fracture. We can sum-
marize this section by bringing together the various
relations derived which interconnect K, K,, a,, m

K3 v
?=ﬂ\/:R(ln4R/w+4x3)

- -2 /TR0, /R
6,= —o(D*/D,)"
pe=X 2R
Hy\ =

Our principal result, equation (27), is a particular
combination of these equations.

In our model, the sources for the dislocations are
assumed to be external to the crack tip, and the
parameter, w, is a measure of the inhomogeneity of
slip in all real materials. If the crack can itself
generate dislocations out of the tip, this process will
be governed by an essentially different type of physics
which we do not address here.

CYCLIC STRESS

Consider next in a qualitative way “fatigue™
growth under an applied cyclic stress. Let the cyclic
stress vary from ¢ =0 to 6 =0,, and the con-
ventional stress intensity factor K vary from K =0 to
K=K, =0,,.(nu)*. The fatigue crack will ad-
vance an increment each cycle if “work hardening™
occurs on the two slip planes, both during forward
slip and during reverse slip. To see why, consider
Fig. 7. Figure 7a shows schematically a dislocation
distribution  B,(x)= B, (x) that exists when
o =0, and the crack has stopped its advance. This
distribution produces a shielding stress intensity fac-
tor L, given by equation (9) to be

Lmn\ = —Kmﬂ‘ + (Kl-:lﬂ( - Im;u)l 2 (29)
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Fig. 7. Cyclic crack advance. Dislocation distribution on
one slip plane. (a) At maximum stress (solid line) and when
stress is reduced to zero (dashed line). (b) Dislocation
distribution of (a) considered as the original distribution
and a reversed slip distribution B,(x). (¢) After the stress is
again increased to maximum value if the crack tip were not
to advance. Forward slip can be considered to oceur by
creation of additional distribution 4,. (d) Crack advance.
Dislocation in inactive slip zone are now “stuck™ in slip
plane and do not advance. (¢) Activation of a slip zone and
distribution function 8° containing both negative and posi-
tive dislocations. The negative dislocation eventually also
become stuck. () After many stress cycles and many
incremental crack advances. A wake of stuck dislocations of
alternating sign are left behind.

where /.. is the value of / from (7) when
B(x) = B, (). Because the crack has stopped but
was advancing immediately before the stress reached
its maximum value

k’l = ’(m.u i Lm;n = Kdv (30)

where K, is given by equation (28) and is the critical
stress intensity factor of a Griffith crack. Further
crack advance would reduce K, to a value smaller
than K. the critical value for brittle propagation of
the crack tip. Now let the external stress, o, and stress
intensity factor, K, be reduced to zero. Then. in the
absence of the repulsive forces on the dislocations due
to the crack K-field. the large dislocation density at
the maximum near the crack tip (see Fig. 6a) will be
forced in the negative direction on the slip plane
(reversed slip) under the mutual repulsions of the
dislocations until a new equilibrium distribution is
achieved, as shown schematically by the dashed line
of Fig. 7a. If the crack tip is locked in position, we
expect many of these dislocations to be pushed well
behind the crack tip. When they get into this region,
however, they are in the presence of the open cleavage
plane of the crack. Under these conditions. an inverse

.-
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image dislocation distribution is generated across the
open crack plane which cancels the long range force
fields of these dislocations. In a sense, the crack faces,
by converting the whole dislocations into dipoles
absorbs these dislocations, so far as their long range
stress fields are concerned, almost as effectively as if
they were physically absorbed into the open cleavage
faces. Only those dislocations which can be sustained
by the modified g, (see below) under the mutual
repulsive interactions from the dislocations will re-
main in front of the crack.

Secondly. on a microscopic level, we can expect the
effect on the crack tip of decreasing K to zero to be
important. In the absence of the external stress, o,
because K, =L from equation (30). K, is a large
negative number, because L is negative. If the crack
tip is reversible, it will thus be driven backwards on
its cleavage plane. Of course, cracks in materials of
even modest ductility should be reversible only in a
limited degree, and over very short distances, but if
the crack tip can recede, this provides additional
room for dislocations to stay ahead of the tip and not
get lost behind it. In any case, the negative K, caused
by the dislocation shielding will provide a large
closure stress on the crack faces, and if the tip itself
remains open, the situation will be analytically
complex.

With this general physical picture in mind, we turn
to an analysis of our simple model. For definiteness,
we assume the crack tip to be locked in position, so
far as retrograde motion is concerned. After the
external stress is turned off, but before the dis-
locations are allowed to redistribute, K, = L, <0, as
noted above. Because of the reversed slip, however,
the magnitude of L will be reduced. The reversed slip
can be considered to occur by the creation of a new
dislocation “reversed” distribution function B,(x)
shown in Fig. 7b, which when added to the distribu-
tion B,,,(x) gives the dashed distribution of Fig. 7a.
Of course, B,(x) must satisly B,(x)dx =0. The
value of L is given after reversed slip by

L= _KHM\+(KI:IIJ\—Ima\_Ir)': (31)

where

I =.4ﬂ}l (wkH iviids
X

112)
and t,(x) is the total change of stress that must be
produced in the reversed slip zone at point x in order
for slip to occur. For the case in which there is no
work hardening 7,(x) would be equal to 2 5, because
the stress started out as equal to a constant friction
stress, a,. before reversed slip started and the stress
has to equal — g, during the reversed slip. This is the
value of 1,(x), however, only in those regions of
reversed slip where B, (x)#0. Where B, (x)=0
and reversed slip occurs, 7,{x) is smaller than 2g,
because the stress on the slip plane was smaller than
a, where B, . (x)=0. Thus for the case where no
work hardening occurs, 1, is not a constant over the
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integral of equation (32). and /, is not equal to sero.
Because B,.(x) is positive in the regions (see Fig. 7h)
where 1,(v) is smaller than a, the term [ is &
negative quantity. The shielding intensity factor L of
equation (31) is a less negative quantity (less
shielding) than L,,.. This result is also true when
work hardening occurs.

Let the stress, which has been reduced to zero,
increase again to the level o,,,. Forward slip will
oceur, as shown in Fig. 7¢. in the reversed slip zone.
If the crack tip were not to advance the shielding
intensity factor L* is now given by

L= —Km.n +(Kl_‘m\—lmu\_lr—'ll)ll (33)
where
4u
I,-=7Jt,(.t)8,(.r)d.\' (34)

where B,(x) is the new additional dislocation distri-
bution produced by the forward slip (jB,-(x)dx =0)
and t,(x) is the total change in stress on the slip plane
in the region where B{x)# 0. When no work hard-
ening occurs over the region where B,,,(x) # 0, then
7(x) = 2 6,. But where B,,,(x) =0, the stress t,(x)
will be smaller than 2 g, by the identical amount that
17,{(x) in the same region was smaller than 2a,.
Because B,(x)= —B,(x) when no work hardening
occurs, I,=—1,. Consequently, L =L, and no
crack advance will occur.

Suppose work hardening occurs during slip. Let
equation (25) be generalized for reversed slip (see
Fig. 5) to give for the friction stress

6, = (6,/DENZ | D* ™) + 6 (35)

where the sum on D* is the sum of the absolute
values of all displacements that have occurred at any
particular point x on a slip plane. (In reversed slip the
friction stress is given by equation (35), but with a
negative sign on the righthand side of the equation.)

Because of work hardening B,(x)# — B,(x) and
I, # —1,. The increase in the value of 7,(x) and 7,(x)
produced by work hardening can be expecied 1o
increase the magnitude of /, and /, given by equations
(32) and (34). However, the same work hardening will
make the magnitude of B,(x) and B,(x) smaller, an
elfcet which will deeresse thie values of £ oand £ I ihe
power exponent m of equation (35) is smaller than |
the effect of work hardening on t, and 1, will be
smaller than on B, and B, and consequently |/,] < /,.
Thus, if the crack tip were not to advance upon
increasing the stress again to ¢ = g,,,, the shielding
intensity factor L is smaller in magnitude than L.
The crack tip stress intensity factor K, will be larger
than K. Thus, the crack tip must advance hefore o
attains its maximum value. As the crack advances it
will leave behind it, "stuck™ on the slip plane, part of
its dislocation distribution as indicated in Fig. 7d.
Part of the distribution is left behind because on the
trailing edge of the distribution |B,| < B,.

As the crack advances and spreads out the distribu-
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tion B,(x) the crack tip stress intensity factor K, will
actually increase further without increasing the stress.
Note that 7, is equal to

o= ﬂ fr(x)B.(x)d.v (36)

X

where 7(x) is equal to the yield stress on the slip plane
wherever B/ (x)#0. Here B,(x) is the distribution
shown by the solid line of Fig. 7a. Now if the crack
advances and spreads out the distribution B,(x), the
trailing “stuck™ edge of this distribution will be in
regions where the stress on the slip plane is smaller
than the yield stress. In the regions where slip is
occurring t(x) is equal to the yield stress and has the
same value as the yield stress in equation (36). Thus
the “*stretched ™ dislocation distribution B, of Fig. 7d
will lead to a value of I,, with sufficient crack
advance, that is smaller than /.. Therefore, K,
increases in value with crack advance. But this in-
crease cannot go on indefinitely, A large value of K,
means that the stress field of the crack tip is increased.
Eventually this increased stress field will produce slip
near, but ahead, of the crack tip as shown in Fig. 7e.
This slip can be described with still another dis-
location distribution function B’(x) where again
[B’(x)dx = 0. The positive dislocations of this func-
tion are further from the crack tip as shown in Fig.
7e, and move in the direction of the advancing crack
tip. The negative dislocations move in the opposite
direction. Eventually the negative dislocations in turn
will also become stuck on the slip plane, but positive
dislocations will join the moving dislocations of the
distribution B,(x). Hence, the total number of posi-
tive dislocations increases and the value of I also
increases. This increase in turn decreases the value of
K, until once again X, is equal to K,. When the
applied stress o has reached the value o,,, . a limited
amount of crack growth thus will insure that K, = K,
and the fatigue crack will stop. In the wake of the
fatigue crack (on both of the slip planes) “stuck™
dislocations of alternating sign will exist as shown in
Fig. 7f.

A rough estimate of the crack growth increment
per stress cycle can be made as follows. To have crack
advance in each cycle, the crack tip stress intensity
factor K, given by equation (24) must equal K,
during the incremental growth. The work hardening
under cyclic slip must, therefore, increase the average
value of the friction stress g, to the point that
K,= K. Thus from equation (24) g, must attain the

value
0= K4/B/w 37

where f is given by equation (27). Let da be the
increment of crack growth per cycle. From equation
(20) when R » w, the length of a slip zone with an
average friction stress o, is equal to nK},, /8 o7 The
number of cycles n required for the crack to advance
this distance is

n=nk:,/8a;da. (38)
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The average displacement D within this slip zone
from equation (21) can be shown to be (for one of
the slip zones of the two slip planes) equal to
KK, /6a,u. The sum L|D| thus is of the order of
2nD or

IID| = Xk, 240 pda. (39)

Inserting equation (39) into (35) gives for o,
(7/ = (G()ID(';,)I Omy Ip("/'nl":‘m 24 lsd )m(lm v (40)

when the term ¢ is relatively unimportant.

Inserting equation (40) into (37) gives the following
equation for the incremental crack growth du per
cycle

3a = (N 1K 24 i) (0w K, DEY™ 0 (41)

This equation is a fourth power Paris equation.
Since the fatigue crack growth is essentially deter-
mined by an accumulated displacement criterion, a
fourth power is what is to be expected [14]. Since the
term K, = (4 uy/X")' ? equation (41) predicts that any
environment that reduces the surface energy will
increase the crack growth rate.

It should be emphasized that equation (41) is not
valid if either K,,, is so large that fracture occurs
under a monotonic increase of the stress towards the
value o,,,. Equation (41) also is not valid of K, is
so small that the friction stress is never reached on the
slip planes. If no slip occurs on these planes the crack
will not propagate in fatigue. Thus, if K, /(2nw)' *is
smaller than the friction stress, clearly no fatigue
crack propagation can take place. In other words, a
threshold effect exists.

DISCUSSION

The original impetus for this paper was to see if a
difference between the published results of the first
and last authors [1, 2] could be resolved. In one of
these earlier calculations, the fracture stress calcu-
lated for the elastic enclave model was shown to be
proportional to y'* where 7 is the surface energy. In
the other, the fracture stress contained in a more
complex power relation. In further work, one of us
[10] has also shown that this discrepancy is due to the
way one estimates the ratio of the plastic zone radius
to the elastic enclave radius. However, in all calcu-
lations of those sorts, in which continuum plasticity
is used in a cut-off procedure at the elastic zone
boundary, very severe problems are encountered
regarding the kind of boundary condition to use at
the elastic enclave radius. In this paper, we have thus
adopted a relatively self-consistent one dimensional
dislocation model where the boundary condition at
the “elastic enclave™ radius is not a problem.

The investigaticn reported here shows that for the
one dimensional model, the fracture stress o, is the
complex power law, equation (27)

K = (th Oy )(l ‘ '"N"'lf.
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Here, K =0, na is the critical stress illlClnil} factor
at fracture, and a is the half length of the crack.
(When the Griftith fracture condition determines the
value of K ,. this term is equal to | 447 ¥") Un-
fortunately, however, this result is valid only for the
one dimensional model. and the full two (and perhaps
diice) dinensionality of die siip aiound the Clack Gp
might vield a still different result.

One of the features of this work is the modification
of the classical BCS model of one dimensional slip in
front of a crack to include an elastic enclave, or
dislpeatipn free sone. Our calenliytion, though inde-
pendently arrived at, is a limiting form of other work
in press by Majumdar and Burns. This important
peguld shives Dol the orack ti clpies intengily Pactiy
K, can be related to the overall stress intensity factor.,
K. and it allows us to derive a fracture stress in terms
of materials parameters for the one dimensional
model.

One of the interesting side features of this in-
vestigation was the discovery that all continuum
theories such as BCS or ours neglects the self-image
term of the dislocations in the crack. This self-image
term. which is present only in bonafide discrete
calculations is important in determining the intrinsic
elastic enclave region around the crack tip, which
must otherwise be an unknown parameter, w, in the
theory. In our work, w is either a scale parameter
determined by the crystalline heterogeneity of plastic
flaw in the material, or as a lower limit, it is given by
the self-image term calculable in a discrete dislocation
model.

In our model. we have also demonstrated one of
the curiosities of the dislocation shielding theory,
namely that under certain conditions it is possible for
the shielding to be zero. In particular for a group of
dislocations on certain slip planes in equilibrium with
a certain kind of friction stress of which g, = const.
is a special case, and where the total summed burgers
vector is zero, the shielding is zero.

Finally, we have applied these ideas to cyclic
fatigue. In qualitative terms we showed that when the
external stress cycles to “off”, the large screening
dislocation distribution near the crack tip explodes
under the internal pressure of the mutual repulsive
forces between the dislocations. Many of the dis-
locations are pushed behind the crack, and “annihil-
ated™” there by the images in the crack faces. and the
remainder left in front of the crack is that total
number which can establish a new equilibrium in the

DOUBLE SLIP PLANE CRACK MODFL.

distance R under the slip planic friction stress, g,{4 )
This residual shielding distribution provides a closure
stress on the tip which may drive the crack tip
backwaurds, and in any case will weld portions of the
cleavage plane back together.

When the external stress is switched back “on™ the
K-iieid of tic vadk regeacsaies The shueiGing Change
partly by action sources on the slip plane, and partly
by moving the “annihilated™ dislocations back into a
shielding configuration in front of the crack.

If there is no work hardening. the dislocation
Jdistribution is essentially reversihle under the stress:
i.e. the sources can regenerate exactly the same
distribution as in the previous cycle, with the crack in
an unchatiged positinn. Huwever i there & sbran
hardening, the sources are unable, at the same stress,
to regenerate the same shielding charge: K, rises
above K, and the crack moves forward to a position
where fresh sources can be activated. Thus in our
view, fatigue growth of the crack is due to strain
hardening during stress cycling. Quantitative analysis
indicates that a fourth power Paris equation describes
the crack growth law.
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